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Abstract

Removal of four dams from the mainstem Klamath River depends on a cost-benefit

analysis that includes expected benefits to fisheries. We predict expected escapement of

Chinook salmon to watersheds above Iron Gate Dam using a log-linear modeling approach.

Data from 77 populations of Chinook salmon in Washington, Idaho, Oregon, and California

are assembled, including average escapement and measures of habitat quantity and quality.

Nonmetric multidimensional scaling is used to reveal that adult run timing is related to

environmental characteristics of watersheds and show that watersheds above Iron Gate are

more similar to spring-run Chinook salmon-bearing watersheds than they are to fall-run

Chinook salmon-bearing watersheds. We use model selection and averaging and bootstrap

resampling to predict escapement to watersheds above Iron Gate. Models based on spring-run

Chinook salmon data only predict escapement of about 3090 spawners per year (90%

confidence interval 1420–25,300) to the upper basin, while models based on the complete

dataset predict 3660 (2420–5510) spawners per year.
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1 Introduction

Impassable dams are a significant factor in the decline of Chinook salmon in the western USA

(Nehlsen et al., 1991; Myers et al., 1998; Lichatowich, 1999). Such dams, developed for

hydropower production, flood and debris control, and water supply for irrigation and

municipalities can block access to large amounts of spawning habitat (Sheer and Steel, 2006;

Lindley et al., 2007) and degrade downstream habitats by altering the timing, quantity and

quality of flows and degrading channel habitats by disrupting sediment regimes (Baxter,

1977; Ligon et al., 1995; Poff and Hart, 2002). Most dams were constructed before 1970, and

many are now reaching the end of their useful lifespan or will need to be relicensed for further

operations. Water and fishery managers are increasingly considering fish passage projects or

dam removals at these junctures as part of a strategy to recover threatened and endangered

fish populations (Kareiva et al., 2000; Pejchar and Warner, 2001; Doyle et al., 2003).

The Klamath River provides an example of this situation. Major impacts to salmon

habitats began during the gold rush in the 1800s, and continued into the dam building era,

beginning with the construction of the impassable Copco Dam in 1917 (NRC, 2004). Copco

prevented anadromous fish from accessing Upper Klamath Lake and its tributaries, including

the Sprague, Williamson and Wood rivers. Three additional dams were built in the mainstem

Klamath River, the lowest being Iron Gate Dam, followed by Copco 2, and J. C. Boyle dams.

Compared to many dams in the Columbia and Sacramento river basins, the dams on the

mainstem Klamath are relatively small producers of hydropower and their impoundments are

not important water supply reservoirs. The Klamath basin is also relatively sparsely populated

and undeveloped, making it a potentially attractive target for restoration. The removal of the

four mainstem dams is a central component of an ambitious proposed restoration program for

the Klamath (Gosnell and Kelly, 2010). The decision to remove the dams may be based in

part on the estimated costs and benefits of removal (Whitelaw and MacMullan, 2002). One

potentially important benefit of dam removal is the restoration of depressed salmon runs in

the Klamath basin. This raises the question of how many salmon should be expected to return

to presently-blocked areas if they were to be made accessible.
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Answering this question requires a model relating salmon abundance to the quantity and

quality of habitat that would be made available by dam removal. Fausch et al. (1988), in a

review of models relating salmon abundance to habitat measures, suggested that for

basin-scale planning and fishery management, models based on measures made at the basin

scale from analysis of maps are appropriate. Alternative approaches require data at finer

scales that must be collected in the field (perhaps by remote sensing) and are typically not

comprehensively available at large spatial scales. Although the distribution and abundance of

fish are strongly influenced by fine-scale factors such as substrate composition and channel

depth, these factors are controlled by and statistically related to basin-scale geomorphology

(Frissell et al., 1986), which makes basin-scale metrics useful predictors of salmonid

abundance (Lanka et al., 1987; Feist et al., 2010).

One challenge in developing models to predict abundance of salmon from geographic

information arises from the abundance of potentially useful predictor variables that can be

derived from maps. With n variables, the number of possible main-effects models is 2n, so the

number of models can quickly become large compared to the number of observations. One

approach to this problem is to use stepwise regression with forward or backward selection of

variables to arrive at a single “best” model with which to make inference and predictions.

There is no guarantee, however, that the best model will be found by the stepwise regression

procedure, and it is likely that this approach will identify spurious correlations and generate

biased parameter estimates when many explanatory variables are considered (Lukacs et al.,

2010). These problems can be ameliorated by using information theory as a basis for model

selection and multi-model averaging (Burnham and Anderson, 1998), an approach that also

better characterizes the real uncertainty in predictions and parameter estimates compared to

inferences and predictions based on a single model (Buckland et al., 1997).

In this paper, we use model selection and model averaging to identify the relationship of

salmon escapement to map-derived metrics of habitat quantity and quality and to predict

escapement for the presently inaccessible areas above Iron Gate Dam. We use an ordination

technique, nonmetric multidimensional scaling (NMDS), to characterize the similarity of

watershed physical characteristics and show the difference between watersheds that support
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spring- and fall-run Chinook salmon. Our predicted escapements are compared to historical

data, an analysis of spawning habitat in the upper Klamath basin, and the predictions of a

simpler model of salmon abundance based solely on watershed area and based partly on more

northerly populations of Chinook salmon.

2 Methods

2.1 Escapement data

We compiled a dataset of 77 Chinook salmon populations from California, Oregon,

Washington and Idaho, selecting populations based on availability of escapement data and

information about the geographic location of their spawning habitat, at the approximate scale

of fifth-field hydrologic units (Seaber et al., 1987). We obtained escapement data from

databases held by the Northwest Fisheries Science Center (for Pacific Northwest watersheds)

and California Department of Fish and Game (for lower Klamath and Central Valley

watersheds). We computed average abundances over the period of record for each watershed.

Life histories of populations were characterized by the season that adults enter freshwater in

the original databases, which included spring, spring/summer, summer, fall and late-fall run

timing. In our analysis, we grouped spring, spring/summer and summer runs as “spring run”,

and grouped fall and late-fall runs as “fall” run.

2.2 Watersheds and their attributes

Figure 1 shows the watersheds for which we compiled escapement estimates and geographic

information. Klamath basin watersheds that are expected to support Chinook salmon after

dam removal include the mainstem Klamath River between Iron Gate and the outlet of Upper

Klamath Lake (Iron Gate-Keno), the Upper Klamath Lake basin (mainly the Wood River), the

Sprague River basin, and the Williamson River basin; the Butte and Lost River basins

apparently never supported Chinook salmon (Hamilton et al., 2005) and are not targeted for

restoration.
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We have strong a priori expectation that some measure of habitat size will be important,

such was watershed area (Parken et al., 2006; Liermann et al., 2010; Kim and Lapointe,

2010), stream length (Bradford et al., 1997), or discharge (Healey, 1991). We characterized

the quantity of habitat as the product of watershed area and precipitation, which captures both

a spatial and flow-related component.

Natural factors affecting habitat quality were mean and maximum elevation, mean

January and August air temperature, and average ratio of base flow to mean annual flow. The

temperature regime of rivers and streams, which is related to mean air temperature (Mohseni

et al., 1998), is considered to be a dominant structuring aspect of the environment that

determines the population structure and life history tactics expressed by Chinook salmon

(Brannon et al., 2004). Elevation, while correlated with temperature, also is a measure of the

cost of migration for anadromous salmonids. Long migrations require energy that could

otherwise be used for reproduction and take time (for adults) that could otherwise be used for

feeding in the ocean. Thus populations spawning at high elevations might be expected to have

lower productivity than low elevation stocks, all else equal. Streams with higher base flow in

the summer might be expected to have relatively more habitat to support spring-running

adults (which spend the summer holding in the river prior to spawning in the fall) and

yearling juvenile migrants, which must spend a summer in freshwater.

We expect that in many cases, habitat degradation will reduce realized escapement to

levels less than what one would expect given the amount of habitat. Measures of human

impact on the landscape included road density, human population density, and the percentages

of the watersheds subject to urban development, pasture and cultivated crops, most of which

have been implicated as threats to river ecosystems generally (Vorosmarty et al., 2010) and to

salmonids specifically (Pess et al., 2002; Steel et al., 2004).
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2.3 Data analysis

2.3.1 Ordination of habitat data

We used non-metric multidimensional scaling (NMDS) to examine whether the environmental

characteristics of watersheds, as characterized by the habitat quality measures, differed

between spring and fall chinook bearing watersheds. NMDS represents multivariate data in a

lower dimensional space (we used two dimensions) by mapping the watershed position in

ordination space such that the distances in this space among them are monotonically related

to the Euclidean distances among them computed from scaled (transformed to have zero

mean and unit variance) environmental characteristics. If spring and fall Chinook salmon use

habitats with consistently different physical conditions then there will be a separation of the

watersheds on the NMDS plot and we can infer which upper Klamath basins will support

spring or fall chinook based on where they are located on the NMDS plot.

2.3.2 Modeling escapement

To identify which variables best explain variations in the escapement of chinook salmon, we

used an information theoretic approach [Akaiki’s information criterion (AIC), Burnham and

Anderson (1998)] to select among log-linear models relating log(escapement) to the various

predictor variables.

The log-linear models are of the general form

log(Ei) = a+b log(Hi)+ cYi + εi, (1)

where Ei is the average escapement in watershed i, Hi is a measure of habitat quantity in

watershed i, Yi is a vector of habitat quality measures, a,b, and c are parameters or vectors of

parameters, and εi is a random variable with mean = 0 that accounts for other sources of

variation. We log or arcsine-square root (proportional data) transformed, centered and scaled

all variables to improve normality and stability of the statistical analysis.

To reduce the number of variables slightly from that considered in the NMDS ordination,

we dropped mean January temperature and maximum elevation, as these were strongly
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correlated with August air temperature and mean elevation, respectively. While we have

strong a priori reasons for thinking that our proposed explanatory variables might be related

to variations in escapement, we do not have strong reasons to favor any particular

combination of explanatory variables. We therefore fit all 256 possible main effects models

that could be constructed with the eight explanatory variables and compared their ability to

explain variation in escapement on the basis of Akaiki’s information criterion, corrected for

small sample sizes [AICc; (Burnham and Anderson, 1998)].

When there is more than one model that is a plausible explanation for the data, model

averaging is better than basing inference and prediction on the best model alone. Differences

between the AICc scores of models and the “best” model (the one with the lowest AICc) form

the basis of model averaging. The weight wi of the ith model is

wi =
exp(−1

2 ∆i)

∑
J
j=1 exp(−1

2 ∆ j)
(2)

where ∆i is the AICc of model i minus the AICc of the best model (Burnham and Anderson,

1998). The wi values can be interpreted as relative weights of evidence for the corresponding

models based on the data. The full suite of J models can be used together to make predictions

by weighting the prediction of each model by its wi. We computed 95% confidence intervals

for these predictions using bootstrap methods (Efron and Tibshirani, 1993) by resampling the

original data 1000 times with replacement, calculating weights for all of the models, and

making model-averaged predictions of escapement for each bootstrap resample (Buckland

et al., 1997).

3 Results

Upper Klamath basins have habitat conditions most similar to watersheds that bear spring-run

Chinook salmon (Figure 2). All four upper Klamath basins have negative x-axis scores, and

only two fall-run Chinook salmon populations have negative x-axis scores (Shasta River

fall-run Chinook salmon (near {−1,2}) and Upper Skagit fall-run Chinook salmon, (near

{0,−5})); most fall-run Chinook salmon populations have x-axis scores >1.0. The x-axis
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score is positively correlated with temperature and negatively correlated with elevation and

the index of base flow. The y-axis, which does not show a separation of spring-run and

fall-run, is positively correlated with flow.

While NMDS does generally show a separation of spring- and fall-run basins, and upper

Klamath basins plot with spring-run Chinook salmon basins, there is some overlap between

spring-run Chinook salmon and fall-run Chinook salmon basins. We therefore present results

of models based on spring-run Chinook salmon data only, and on the combined spring- and

fall run dataset.

3.1 Models based on spring-run Chinook salmon data only

The model selection strategy identified precipitation×area and mean August air temperature

as the best explanation for variation in log(escapement) for spring-run Chinook salmon,

although the next 9 best models were within 2.5 AICc units of the best model and can also be

considered good explanations for the data (Table 1). Precipitation×area was included in 91 of

the top 100 models, had the largest effect size at 0.371, and was the only covariate whose

95% confidence interval did not include 0 (Table 2). Other covariates appeared in less than

half of the top 100 models and 95% confidence intervals on their estimates included 0.

Table 3 shows model-averaged predictions for the upper basin watersheds. Model

averaging predicts a total escapement of 3093 Chinook salmon, and the total of the basin

bootstrap medians is 3921 (90% CI = 1424–25,283).

3.2 Models based on the combined spring- and fall-run dataset

Model selection identified a similar suite of models as the best explanation for the entire

dataset, with precipitation×area and August air temperature as the most important variables

(Tables 4 and 5). For these two variables, the direction of effect was the same as in the models

based only on spring-run Chinook salmon data (positive), although the estimated effect sizes

are larger when the combined data set is used. All of the top 10 models included these terms,

while the other effects, whose 95% confidence intervals included 0, appeared in some but not
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all of the top 10 models. The directions of the human population density, baseflow index,

development and elevation effects were not consistent between the analysis based on the full

data set and the analysis based on just spring-run Chinook salmon data.

Model-averaged predictions based on the complete dataset are shown in Table 6. Mean

and median bootstrap predictions were slightly larger than that of the models based only on

spring-run Chinook salmon data (3668 and 3633, respectively) , but the bootstrap 90%

confidence interval was much narrower (2415–5509).

4 Discussion

Before we can relate our findings to relevant information in the literature, it is first necessary

to discuss the relationship between life history type and the timing of adult return to

freshwater (spring and fall run time). Healey (1991), following Gilbert (1913), identifies two

main types of life histories within Chinook salmon: steam-type and ocean-type. These types

differ by their age at ocean entry, degree of offshore migration, and timing of adult return.

Stream-type Chinook salmon spend at least a year in freshwater as juveniles, undertake

extensive offshore migrations in the open ocean, and return to freshwater in the spring. Ocean

type Chinook salmon migrate to the sea after just a few months of freshwater rearing, remain

in coastal marine waters, and return to freshwater in the fall for spawning. Because

ocean-type Chinook salmon spend more of their life in the ocean, they should be more

productive, but because they are coastally oriented, they suffer higher harvest rates in ocean

fisheries. It is tempting to equate stream-type with spring-run and ocean-type with fall-run

Chinook salmon, but Waples et al. (2004) shows that life history tactics vary widely among

Chinook salmon populations. For instance, in California, many spring-run Chinook salmon

populations produce sub-yearling migrants and do not undertake oceanic migrations. So,

while Klamath spring-run Chinook salmon might be expected to have lower productivity than

fall-run Chinook salmon due to their longer freshwater migration and perhaps reduced ocean

residency, they aren’t expected to have harvest rates as low as those stocks with oceanic rather

than coastal migrations.
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Our analysis of the environmental characteristics of the upper Klamath basin in relation to

Chinook salmon habitat in the Pacific Northwest and California suggests that the upper

Klamath is best suited for spring-run Chinook salmon. Thurow et al. (1997) used a modeling

approach based on classification trees to conclude that the upper Klamath basin has habitat

conditions that could have supported stream-type Chinook salmon, but not ocean-type

Chinook salmon. This is consistent with our findings based on ordination of habitat variables,

but in contrast with information presented by Fortune et al. (1966) and Hamilton et al. (2005),

who review historical accounts indicating that distinct runs of Chinook salmon entered the

upper Klamath in the early summer (i.e., spring-time entry into freshwater) and in the

autumn. Fortune et al. (1966) indicates that spring-run Chinook salmon were largely gone

from the upper basin before that area was settled by Europeans, so perhaps fall-run Chinook

salmon were a small portion of total returns prior to the 1850s.

Our model is most directly comparable to that of Liermann et al. (2010), but such a

comparison is complicated by the influence of harvest. Our model predicts escapement (the

spawning run after harvest in the ocean and river), while Liermann et al. (2010) predict the

equilibrium population size in the absence of fishing. Applying their stream-type equation to

the individual upper Klamath basins separately and summing over basins predicts a

non-fished equilibrium run size ≈ 41,000.

To explore whether fishing could plausibly account for the difference between our

escapement (Pe) prediction and Liermann et al.’s equilibrium unfished population size (Pr)

prediction, we calculated Pe/Pr for all of the populations in our data set, which averages

0.130. From this ratio we can infer an implied harvest rate ue (Ricker (1975), Appendix 3):

ue = 1− exp
[

r
(

Pe

Pr
−1

)]
(3)

where r is the productivity parameter estimated by (Liermann et al., 2010) (1.455 for

stream-type Chinook salmon). Using the stream-type r, our analysis implies an average brood

exploitation rate of 0.712 (SD=0.071), high by recent standards but not out of line with

harvest rates of coastal-migrating Chinook salmon in the 1980s. This implies that unfished

11



equilibrium population sizes might be about 7.70 times the size of our predicted escapements

on average. Thus, the effects of fishing are probably not large enough to explain the

difference between predictions of our model and that of Liermann et al. (2010). The other

major difference between the two modeling approaches is the underlying data sets: Liermann

et al. (2010) used data from British Columbia, and for which detailed harvest information is

available (which might tend to be the more important stocks for fisheries, which would be the

large and productive ones). We restricted our analysis to populations closer to the Klamath

basin, and included populations that aren’t the focus of fisheries management.

Fortune et al. (1966) provides two more points of reference. They report counts of

Chinook salmon at the Klamathon fish racks (near the present site of Iron Gate Dam), which

averaged 10,456 per year over the 1925-1961 period. Chinook salmon were intercepted at the

fish rack to collect eggs for the Fall Creek fish hatchery, located on a tributary to the Klamath

River below Copco Dam and upstream of Iron Gate, and later to Iron Gate Hatchery (Leitritz,

1970). Counts at the Klamathon racks therefore presumably reflect some contribution from

hatchery production. Fortune et al. (1966) also surveyed the river and its tributaries above

Iron Gate and quantified the area of spawning gravel. They concluded that there was enough

gravel above Iron Gate to support 4590 Chinook salmon without crowding of redds.

Other efforts to predict the response of salmon to dam removal appear to be rare in the

literature. Pess et al. (2008) conducted a detailed assessment of the distribution of habitat and

salmonids in the Elwha River in Washington, but made only qualitative predictions about the

relative likelihood of various species recolonizing areas above two dams proposed for

removal. They found that the primary effect of the dams was that they were blocking the

migration of anadromous salmonids to areas above the dam, but that downstream effects of

the dam were also important. Kareiva et al. (2000) used a matrix population model to predict

whether removing a series of large but passable dams in the Columbia basin would be

sufficient to recover Chinook salmon in the Snake River. They found that removing the dams

would not necessarily prevent extinction of Snake River spring/summer Chinook salmon,

although that conclusion is contested (Dambacher et al., 2001).

Our modeling approach provides an estimate of expected escapement of Chinook salmon
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to areas above Iron Gate dam, based on the simple assumption that we can extrapolate the

relationship between levels of escapement in other watersheds in the region and the

characteristics of those watersheds, especially their size. The models, of course say nothing

about important dynamics that are likely to result from the removal of the dams, which will

essentially be a large disturbance to the ecosystem. Simulation modeling can attempt to

capture some of the transition, such the recolonization process, disease dynamics, sediment

movements and effects on fish, and water quality impacts on migration timing and success,

and thereby provide useful insights into the roles that various ecological and physical

processes might play (Hart et al., 2002). However, increased realism and detail comes with

the price of greatly increased data requirements and modeling effort. As model complexity

rises, it becomes increasingly difficult to rigorously quantify the uncertainties that arise from

the underlying data and the assumptions underpinning the model structure. While such efforts

are worthwhile, simpler empirically-based approaches such as we have illustrated here

provide a transparent, data-based, and easily understood point of reference with which to

compare the results of more detailed analyses.

Our model predicts a fairly modest increase in escapement of Chinook salmon to the

Klamath basin if the dams are removed. The addition of several populations of spring-run

Chinook salmon with greater than 800 spawners per year to the upper Klamath would

significantly benefit Klamath Chinook salmon from a conservation perspective, in addition to

the fishery benefits. Stable spawning populations of that size are potentially viable

independent populations that would contribute to the viability of the Upper Klamath and

Trinity Rivers (UKTR) Chinook salmon Evolutionarily Significant Unit (ESU), according to

the viability assessment framework of Lindley et al. (2007). The last status review of the

UKTR ESU expressed significant concern about the very poor status of the spring-run

component of the ESU (Myers et al., 1998). Viable populations of spring-run Chinook

salmon in the upper Klamath would increase the diversity and improve the spatial structure of

the ESU, enhancing it viability (McElhany et al., 2000) and improving the sustainability of

this ESU into an uncertain future.
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Table 1: Comparison of the 10 best linear models explaining variation in spring-run Chinook
salmon escapement.

Rank Model formula AICc Weight
1 log.spawners ∼ 1 + log.preciparea + AugT 107.3 0.08329
2 log.spawners ∼ 1 + log.preciparea + log.elev 108.3 0.05000
3 log.spawners ∼ 1 + log.preciparea + baseflow 108.6 0.04369
4 log.spawners ∼ 1 + log.preciparea + log.elev + development 109.1 0.03480
5 log.spawners ∼ 1 + log.preciparea + log.elev + development + roads 109.2 0.03287
6 log.spawners ∼ 1 + log.preciparea + log.elev + AugT 109.4 0.02926
7 log.spawners ∼ 1 + log.preciparea + baseflow + AugT 109.5 0.02820
8 log.spawners ∼ 1 + log.preciparea + AugT + crops 109.6 0.02633
9 log.spawners ∼ 1 + log.preciparea + AugT + humans 109.6 0.02599
10 log.spawners ∼ 1 + log.preciparea + AugT + roads 109.7 0.02483
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Table 2: Model-average estimates of coefficients based on best 100 models using spring-run pop-
ulations. No. models is the number of models (out of the top 100) including that parameter.
Variable Estimate Unconditional variance No. models Importance +/−α = 0.05
crops -0.00656 0.00173 37 0.201 0.0843
humans 0.02551 0.00535 35 0.222 0.1483
roads 0.07679 0.02521 37 0.277 0.3221
baseflow -0.05273 0.01459 39 0.289 0.2450
development -0.14935 0.06510 46 0.365 0.5176
log.elev -0.14613 0.05078 44 0.411 0.4571
AugT 0.15344 0.03916 49 0.505 0.4014
log.preciparea 0.37128 0.02407 91 0.959 0.3147
(Intercept) 0.02399 0.02016 100 1.000 0.2880
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Table 3: Model-averaged predictions for escapement to Upper Klamath basin watersheds with
bootstrap median and 90% interval, based on the spring-run Chinook salmon dataset.
Watershed Model Average 0.50 Quantile 0.05 Quantile 0.95 Quantile
Williamson River 806 1,054 317 5,599
Sprague River 989 1,370 511 12,555
Upper Klamath Lake 578 522 163 1,158
Klamath Mainstem - Iron Gate to Keno 720 975 433 5,471
Total 3093 3921 1424 25,283
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Table 4: Comparison of the 10 best linear models explaining variation in Chinook salmon escape-
ment, based on both spring-run and fall-run Chinook salmon data.
Rank Model formula AICc Weight
1 log.spawners ∼ 1 + log.preciparea + log.elev + AugT + crops 173.1 0.06492
2 log.spawners ∼ 1 + log.preciparea + AugT 173.6 0.05217
3 log.spawners ∼ 1 + log.preciparea + log.elev + AugT + development + crops 173.6 0.05162
4 log.spawners ∼ 1 + log.preciparea + AugT + crops 173.7 0.04922
5 log.spawners ∼ 1 + log.preciparea + baseflow + AugT + crops 173.8 0.04675
6 log.spawners ∼ 1 + log.preciparea + log.elev + AugT 173.8 0.04663
7 log.spawners ∼ 1 + log.preciparea + log.elev + AugT + crops + roads 173.9 0.04429
8 log.spawners ∼ 1 + log.preciparea + log.elev + AugT + development 174.0 0.04217
9 log.spawners ∼ 1 + log.preciparea + baseflow + AugT 174.3 0.03585
10 log.spawners ∼ 1 + log.preciparea + log.elev + AugT +roads 174.4 0.03373
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Table 5: Model-average estimates of coefficients based on best 100 models using data from all
populations. No. models is the number of models (out of the top 100) including that parameter.

Variable Estimate Variance No. models Importance +/−α = 0.05
humans −0.01353 0.003522 46 0.2623 0.1185
development 0.00646 0.007289 44 0.2862 0.1704
roads 0.06910 0.019031 47 0.3318 0.2754
baseflow 0.04541 0.009327 43 0.3572 0.1928
log.elev 0.14817 0.035362 48 0.5334 0.3754
crops −0.09559 0.013680 43 0.5456 0.2335
AugT 0.47028 0.019018 68 0.9974 0.2753
log.preciparea 0.43030 0.010020 96 0.9999 0.1998
(Intercept) 0.01374 0.008640 100 1.0000 0.1855
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Table 6: Model-averaged predictions for escapement to Upper Klamath basin watersheds with
bootstrap median and 90% interval.
Watershed Model Average 0.50 Quantile 0.05 Quantile 0.95 Quantile
Williamson River 926 913 587 1,373
Sprague River 1,090 1,100 777 1,739
Upper Klamath Lake 701 676 389 952
Klamath Mainstem - Iron Gate to Keno 941 944 662 1,445
Total 3658 3633 2415 5509
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Figure 1: Map of study basins.
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Figure 2: Ordination of environmental characteristics of chinook-bearing watersheds in California,
Oregon and Washington. F indicates a basin bearing fall chinook, S indicates a spring chinook
basin, and Will, Spra, UKL, and Klam indicates the Williamson River, Sprague River, Upper
Klamath Lake basins, and the Klamath and its tributaries between Iron Gate dams and Link River.
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